
E3 draft results action items 
Fit for purpose 
The purpose of the distribution wildfire risk modeling effort is to provide quantitative estimates of 

wildfire risks posed by grid assets for use in risk-informed mitigation planning. Since mitigations are 

durable and planning operates on an annual cycle, the risks calculated are based on a combination of 

annual ignition probabilities and location-specific consequence data derived from fire simulations, under 

dangerous historical wind, heat, and fuel dryness conditions, where the expected count of ignitions 

multiplied by their expected consequences yields the risk they pose.  

The distribution wildfire risk model is just one part of PG&E’s overall wildfire mitigation program. For 

example, the company has developed a shorter-term operational model that takes the upcoming 

weather forecast as its main input and supports the determination of when and where PSPS events will 

be called. The PSPS model can also help to identify circuit segments that could remain fully powered if 

appropriate switching hardware is installed or mitigation actions are undertaken. PG&E also benefits 

from the subject matter expertise of its work force, with specialized knowledge of equipment, 

vegetation, wildfire mitigation options, and the service territory, all of which can guide, inform, and help 

to prioritize the mitigation program. 

The primary determinants of the structure of the distribution wildfire risk model are the long-term 

asset-based planning and prioritization questions being asked of it, the known causes of distribution grid 

ignitions and how uncommon they are in both time and space, and the character of the data available to 

train it. The model must operate over annual timeframes, but with sufficient specificity to resolve the 

relative risks posed by different assets. A large fraction of ignitions is caused by interactions between 

grid assets and their environment, so environmental data, including data on trees, weather, and climate, 

must be made available to the model. Furthermore, regardless of cause, ignitions are only viable given 

available fuels that a dry enough to burn, so modeling “fire conditions” also require the support of 

environmental data.  

The outage type most likely to produce an ignition is a wire down event and the most common cause of 

wire down events is contact from vegetation. Thus the modeling effort for 2021 was focused on 

vegetation-caused and conductor-involved ignitions - these are among the most highly environmentally 

interactive ignition types. 

There is significant uncertainty in the exact equipment involved in historical ignitions and outages . 

Ignition locations are approximate and not tied to grid assets and outage locations most reliably record 

the location of the protective device that actuated. So the model must be robust to uncertainty around 

the id of the equipment involved and its exact location. 

Finally, it is well understood that ignition events are typically associated with outages. It is therefore 

possible to model ignitions directly or model a broader set of outages and re-scale the results to 

ignitions. The competing issues are: 

(1) outages are not all equally likely to produce ignitions – their type, cause, location, failure mode and 

surrounding environmental conditions all contribute to their propensity to cause ignitions and the 



consequences of the ignitions they do start depend on local fuels, dryness, topography, wind, and 

proximity to infrastructure that can burn. Outages caused by wind, for example, are already associated 

with one of the ingredients of fire spread. However, winter storms, which often hit coastal locations the 

hardest and represent the majority of wind-driven outages, pose virtually no catastrophic wildfire risk 

due to their wet conditions. Models based on outages must attempt to resolve the complex relationship 

between outages and much rarer ignitions.  

(2) There are significantly fewer ignitions than outages - directly modeling ignitions bypasses the need 

to model the complex relationship between outages and ignitions, but the relative sparsity of ignition 

data raises concerns about the statistical power of models trained on them. If there are too few ignitions 

to deliver a good model fit, it will fail to accurately predict on out of sample data (new locations, future 

years, etc.). 

Both concerns can be expressed in terms of prediction accuracy: Outage-trained models are fit to 

failures that are related to but distinct from ignitions. Their predictions can be wrong when the 

conditions that favor outages do not favor ignition. Ignition trained models may lack the training data 

required to converge to a stable estimate - uncertainties decrease with more training data. Their 

predictions can be wrong because model fits may include too much stochastic noise to accurately 

capture the drivers of ignitions. In both cases, the prescription is to train the models and test their 

performance on out of sample data. Whatever theoretical concerns we have, their impact will be felt 

through (decreased) prediction accuracy. 

Taken altogether, these constraints suggest a model that prioritizes spatial resolution of its results , that 

can be trained on sparse data (zero inflation and class imbalance), that is robust to spatial uncertainties, 

and works well with both environmental asset data. These constraints point quite clearly to what we 

have described as our “where” model. The “where” model starts with a pixelated map of grid locations, 

with indicators of ignitions (or outages) and environmental and asset covariates available at each 

location. Both environmental data and asset attributes are spatially correlated, so such an approach is 

likely to be robust to spatial uncertainties, and the until of analysis is spatial pixels, not assets, so 

uncertainty in precisely which asset failed does not preclude modeling based on nearby asset attributes. 

So far, the probability of ignition for each grid pixel could be estimated by a typical classification model, 

like logistic regression, SVM, or random forest. The possibility of complex interaction between 

covariates and of over-fitting the training data demand feature generation and some form of feature 

selection through regularization, and the class imbalance (a model that always predicts “no ignition” will 

be right most of the time, but totally useless) would appear to demand some form of resampling or 

weighting scheme.  

All these requirements could be met given sufficient time and model complexity. Indeed, there is plenty 

of cause to keep exploring those options. However, there is a model form well known to ecological 

modelers that does all of the above (rasterized spatial data, feature generation, regularization, out of 

sample testing) and re-frames the problem as presence/background rather than presence/absence 

estimation. This approach is based on constructing empirical distributions of the conditions (I.e. 

covariate values) associated with the grid pixels that hosted ignitions (or outages) and the distribution of 

conditions that prevail among all grid pixels. Determining whether a given grid pixel would be expected 

to be drawn from the ignition distribution is a matter of determining the ratio of the two distributions. 

That estimation is performed through a maximum entropy optimization that seeks the least unique 



solution that fits the available data and in so doing, it neatly sidesteps class imbalance and accepts 

spatial and covariate uncertainties. This approach, called MaxEnt in the literature, is implemented in 

software called Maxent and Maxent was used to train the P(ignition) portion of the 2021 wildfire 

distribution risk models (there is one model trained on vegetation-caused events and another trained on 

conductor-involved events). 

One of the most important covariates in the modeling is causally linked to vegetation-caused events: 

high spatial resolution tree height data. Trees that are not taller than the lines cannot hit them and trees 

that are not close enough to the lines cannot hit them. Lidar data is quite useful in this regard, but was 

not available for use in the 2021 modeling effort. Additionally, even with lidar, it is notoriously difficult 

to produce accurate tree data across the full territory with regular updates.  Instead, we utilized satellite-

derived tree height estimates produced using computer vision deep learning algorithms by Salo Sciences  

(members of the RaDA consulting team). Tree height data with comprehensive coverage and derived 

data products like fall-in tree coverage, relating line locations and tree heights, was consistently among 

the most important covariates in the modeling. 

The table below summarizes key documents and presentations developed during the exploratory and 

active modeling phases of the project. They speak to the modeling objectives, exploration of model 

forms, available data, the performance and interpretation of the MaxEnt approach to spatial modeling, 

etc. All are available via ESFT. 

Milestone 1 analysis 
documentation 2020-
02-06.pdf 

First major MaxEnt written deliverable. Lots of description around 
modeling choices. 
Ends with maps of major early covariates. 

Dx Risk _ Phase 1 _ 
Milestone 1.pptx 

slide 13: Ignition map 
slide 14 visual explanation of MaxEnt comparing presence and 
background distributions of covariates. 
slide 15 tree height data – very important input 
slides 18 and 19: intuitive display of high and low probability locations 
against HFTDs 
slide 21: ignition probabilities by HFTD tier – higher tier; higher 
probabilities – intuitive 
slide 34: green, yellow, red visuals for low, medium, and high risk 

Lunch and learn 
presentation.pptx 

Slides 13 and 14: concise problem statement 

DxRisk P1 M3_ Maxent 
circuit priortization.pdf 

Capstone document on MaxEnt applications from the end of our first 
Phase of work. Visual comparisons of ME fits using ignitions, outages, 
and wiredown events. Performance metrics for ignitions model 
predicting ignitions and outage model predicting outages. 

DxRisk Phase 1 
modeling summary.pdf 

Capstone visual summary of status of Where (MaxEnt)? When (Arrival 
Process)? And What (Outage/Ignition event classification)? modeling 
at the end of our first Phase of work. Get at the choice of MaxEnt for 
answering the “Where” questions of multi-year system hardening 
prioritization. 
Note slide 27, detailing the difference in the timing of when outages 
and ignitions occur. 



VM_ME_model_with_
wind.docx 

Phase 1 analysis of the impact of mean wind speed (long term 
average) on ignitions model predictions, with color coded map. 

SALO fall-in trees.pdf Visual details on Salo’s derivation of our fall-in tree covariate 
DxRisk Phase 1 
Milestone 3_ Overview 
and Model 
Specifications.pdf 

Synthesis document for all Phase 1 modeling activities, including 
project goals, features of the data/problem that govern our modeling 
choices, and “where”, “when”, “what” model specifications  

Dx Risk Phase 1, 
Milestone 2 - Data 
Exploration and 
Synthesis.docx 

Summary of data sources for modeling and an evaluation of their 
fitness for our purposes. 

E3 review new 
modeling results.pptx 

PPT with figures, maps, and discussion relating to the modeling 
process and the fitness of ignition vs. outage trained models. 
Developed for this review. Highly relevant. 

VMD_trees_2019_pz_s
ummary_covariates_e3
_hftd_23.csv 

Csv “roll-ups” of vegetation-caused results for P(ign), P(outage), 
consequence (official p(ign) and the results of the models run for the 
“new modeling results” ppt, and covariate values for all CPZs.  

2021 EVM Wildfire Risk 
Model Results - CPZ 
exploration tool.xlsx 

Color-coded spreadsheet of CPZ level results developed to support the 
model handoff and discussion with EVM planning experts. 

2021 Conductor 
Wildfire Risk Model 
Results - CPZ 
exploration tool - was 
named 
conductor_pz_summar
y_hftd_23_release2020
1015.xlsx 
 

Spreadsheet summarizing CPZ level modeling results, with their 
associated covariates, developed to support the model validation and 
handoff with system hardening experts. 

EVM-CPZ-analysis for 
Regional review 
call.pptx 

Summary of top CPZ for each EVM region for discussion with regional 
heads and other VM experts in the process of validating/improving the 
model. 

Keswick 1101 model 

views.pptx 

Circuit zoom looking to explain the high ranking of a specific circuit. 
Responsive to interest in much more finely resolved pixel-level 
prediction differentiation. 

Buck Creek Field Visit 

4.16.2021.pptx 

Circuit zoom looking to explain the high ranking of a specific circuit. 
Responsive to interest in much more finely resolved pixel-level 
prediction differentiation. 
 

 

Ignitions are not proportional to outages 

The figures below relate to the use of ignition data in modeling and the performance of those models. 



 

Figure 1: difference in arrival rates of different event types from 2015 to 2020. Note the relative quiet in 

outages during the summer months when ignitions are the most prominent.  (add wind; show how wind 

colinear with other stuff; better allocation of resources towards high risk areas) 

Model “sees the trees” – what evidence can we provide that the model is not just finding tier 3 but 

differentiating more finely - see all the pixel level views of predictions 

Planning decisions that are impacted by the “detail experts” - see the “handoff” and “discussion” 

assets. 

Schematic  diagram of model informing the experts and vice versa 

Next version of the model – what additional questions are we trying to answer? Most important: 

mitigations apply to specific types of ignition causes. Line insulation can prevent both line slap and other 

sources of phase-to-phase faults, but line spacers prevent only line slap. We are being asked to 

disaggregate the top-line P(ignition) estimates according to more finely resolved event types. Another 

example: branch failures vs. trunk failures. To do so, we need to model outages and face the challenge 

of estimating the probability of an ignition given an outage’s characteristics (including type, location, 

environment, etc.). 



 

 



 

Figure 2: Outage to ignition classification model performance by equipment type. Depends on 

equipment type involved. For conductors, ignitions are more likely during heatwaves, in wind, and on 

sunny days, and less likely as fuel moisture and population density increase.  

 



 

Figure 3: MaxEnt outage (left) vs. ignition (right) predictions. 



 

Figure 4: Vegetation-caused outages 2011-2020 

 

Figure 5: wiredown events (highly correlated with ignitions) by cause type. Note spatial heterogeneity.  



left right matches n_left n_right pct_left pct_right 

outages wires_down 10772 707312 10812 1.5 99.6 

outages veg_outage 62341 707312 76389 8.8 81.6 

outages ign 1267 707312 1351 0.2 93.8 

wires_down veg_outage 2342 10812 76389 21.7 3.1 

wires_down ign 198 10812 1351 1.8 14.7 

veg_outage ign 385 76389 1351 0.5 28.5 

Table 1: Proportion of events that are also another type. 0.2% of all outages are ignitions 0.5% of 

vegetation-caused outages are ignitions and 1.8% of wires down are ignitions.  

 

Physical interpretation 

 

Figure 4: MaxEnt prediction of P(ignition) higher in HFTD tiers 2 and 3 (earlier model of entire grid, not 

just restricted to the HFTDs 



 

Figure 5: Top 5% of P(ignition) predictions closely align with the HFTD tier 3 zones in northern CA and 

the sites of many prominent fires. 

  

Figure 6: Ignitions associated with higher annual max gust speeds and taller trees  



 

 

Figure 7: Locations where the prevailing wind covariate increase (red) and decreases (blue) P(ignition) 

Compare maps of outage and ignitions to note differences and likely explanations - Proves that outage and 

ignition have a poor or at least spatially uneven correlation, which helps justify a focus on ignition 

See companion deck slides 3 and 4. On slide 3, you will find vegetation-caused outage points (blue) and ignition 

point (red) for all year (left) and June-Nov (right). Recall that our modeling concern is whether outage and ignitions 
share the same spatial patterns. When they do not, an outage-trained model will be more likely to prioritize 

locations/assets that correlate with outage risk rather than ignition risk, diluting the prioritization of wildfire risk. 
Referring to the map on the left, it is clear that outages do not share the same spatial patterns as ignitions. One of 

Commented [BS1]: Produce maps outages and ignitions 
for both actuals and predictions. 

 



the most prominent effects is the greater prominence of coastal outages from winter storms. There are also 
outages from snow/ide loading in the Sierras. We might conclude that only fire-season outages should be 

examined to isolate more plausible wildfire failure causes. The map on the right shows better spatial alignment 
between fire-season outages and ignitions, but the relative density of the two event types still differs.  

Referring to slide 4, which presents kernel density estimates for ignitions (left), outages(center), and fire-season 
outage (right), it is straight forward to identify locations where ignitions occur with relatively higher density than 

summer outages. See for example the central sierras and north and south coasts. In a nutshell, we understand that 
“ignition conditions” require an outage to take place with small fuels available and those available fuels to dry 

enough to favor propagation. Fuel availability and dryness are not direct drivers of outages and thus spatial 
predictions of outage probabilities, even in the summer, offer a clouded view of where reportable ignitions should 

be expected. 

We expect that a non-trivial model that expresses the relationship between outages and ignitions based on 

locations and conditions could correct models trained on (far more prevalent) outage data and are currently 
pursuing such a strategy. The development of such a model was ruled out due to lack of available development 

time during the modeling for the 2021 deliverables, so the team focused on modeling ignitions directly to avoid 
biasing results away from locations lacking ignition supporting conditions. This decision was supported by 
mitigation subject matter experts concerned about having their work directed to low impact outage-drive 

locations.  

See also earlier work visualizing outage and ignition rates in time series. 

Explain data available to use in model, Guides choice of Max Ent or other modeling approach, Points to holes in 
data that should be a focus of future data collection 

See Phase 2 report for our assessment of all available data, as diagramed below. See also the MaxEnt methods 
document for a discussion of the factors that led to its selection. 

 

 

Commented [BS2]: Outage and ignition data with only 

locational information guided choice of model which 

manages presence only data challenge well. Outline 

identification of need for spatial model. Provide Phase 1 
report. 

 

Future improvement in outage and ignition data that is 
associated with the failed asset will allow for potentially use 

of other model approaches. 

Discuss planned data improvements (LiDAR, etc) 



Figure 8: Visual summary of data sets available to the modeling team and cataloged during Milestone 2 of the 
project. 

Create an outage-based model to compete against the ignition-based model Compare results to identify/prove 
the best model for PG&E’s available data 

Supporting ppt, slides 5-12. Trained 4 different vegetation-caused ignition/outage model specifications using 4-fold 
75%/25% train/test splits, always testing on out of sample ignitions. All models focused on HFTDs 2 and 3. The 

official vegetation-caused ignition model for 2021 was trained using “core” and “fire susceptibility” covariates, 
combine as “official covariates”. Models include: (1) outage from all year; core covariates (2) Jun-Nov outage; core 

covariates (3) Jun-Nov outages; official covariates (4) Jun-Nov ignitions; official covariates (official model with 
different training data). Ignition model out-performs best effort outages model with ROC-AUC, with % of correct 

ignition predictions within the first 20% of ranked grid pixels, and with precision recall, but the two are fairly close. 

The qualitative differences between the two models are: ignitions model more concerned in the Sierra Foothills, 

and North Bay hills and less concerned along the coast and in urban areas. 

Include zoomed-in results from two or three pixels to better showcase spatial resolution Explain the implications 

of the modeling results for PG&E’s assets in those pixels 

See zoomed in PPTs. Also note that  

Present evidence to suggest that 8-hour fire simulations do not produce meaningfully different results than 

longer simulations 

[JET] 

Emphasis / future documentation structure 
Avoid messaging that wind is inconsequential in ignition modeling. Due to difficulty disentangling wind from 
other variables, making the claim definitively is challenging. As PG&E has seen, stating that wind is unimportant 

raises red flags among stakeholders that make communication of other ideas difficult. 

[we didn’t say it was inconsequential, are following advice RE emphasis for next year, FAQ section on wind, high 
rank in EVM; wind dominates consequence, but not all ignitions] 

Put intuitive findings in the forefront to assure the audience that this model is physical and conforms to 
expectations. E.g. Fig. 26 and Fig. 28 show great parallel, and Fig. 61 showcases Max Ent ‘s ability to learn a 

physical rule 

[we appreciate this input for our future documentation – feel free to reference those figures and additional 

intuitive support in your work] 

State early and clearly that consequence is the most impactful component of risk. This point is already 

mentioned, but emphasis is needed to counter the volume of documentation spent on probability of ignition, which 
may imply the opposite relationship 

[we agree; will do in the future; scatter plot – risk vs. consequence; we interpret the dominance as some 
landscapes are more primed for fire through dryness, fuels, exposure to wind – for example, the 2020 lightning 

strikes showed how viable ignitions were in landscapes throughout CA] 

Explore ways to show importance of variables in risk (not just ignition). I ncluding consequence may visually 

promote the role wind and avoid questions from reviewers 

[CPZ csv with covariates and risk components provided] 

Commented [BS3]: Produce ROC curves to measure 

predictive power of outage and ignition trained models in 

predicting ignitions. 

 

Commented [BS4]: Zoomed in views of the actual 

ignitions and probabilities map. Provide views of circuit and 

circuit segment views of locations, ie, Vaca, Middletown, 

Keswick, 

Commented [BS5]: Check with TS and Meteorology on 

sensitivity analysis on longer simulations. Larger 
uncertainties. 

Commented [BS6]: Highlight locations in documentation 

where call out importance of wind in the model. Knit 

together to show that wind not inconsequential and better 

understand it’s role. Strengthen role of wind in 
consequence and overall risk. Explore season weather data 

and consequence scores to see if pattern that supports the 

importance of wind. 

 

Commented [BS7]: Provide narrative to support the 
figures more clearly to non-statistical reader. (Also in Phase 

1 report). 

Commented [BS8]: Provide additional narrative with 

charts from documentation. 

Commented [BS9]: CPZ level summaries with average 

covariate values. SH spreadsheet for Brad. Develop 
scatterplots for variables from spreadsheet. Check with 

meteorology for wind conditions on worst weather days. 



Use data bootstrapping to reduce class imbalance. Useful for methods that model ignitions or outages  

[different cure for the same symptom; we work with presence only and compare distributions; imbalance 

undermines prediction and prediction is good; background locations are sampled in MaxEnt - however, we are 
now reporting cross validated performance data] 

State what aspects of consequence scoring are inherited from elsewhere (CPUC or PG&E) versus unique to the 
Risk Model 

[JET - MAVF already quantifies risk (defines risk units) and identifies tranches of risk associated with wildfire. EORM 
performs these top-down calculations and it is desirable to have our work tie in with and normalize to EORM’s 

reported risk scores] 

Consider removing the variable selection process and use all variables. Removing some of the variables 

introduced one of the most controversial decision within this method, which is removing wind for the conductor 
model. E3 agrees with the reasoning but believes that including the variable will not decrease the predictive power.  

Max Ent is a parsimonious and strongly regularized model, even with the total set of variables it should still be easy 
to avoid over-training. It is recommended to include all variables and observe how does the ROC change. E3 

predicts no substantial change 

[Yes this is a case where a modeler could impose model structure not required for overall fit. Indeed those 
variables did not produce over-fitting when included] 

Continuous improvement 
Compare results of current Risk Model to historical Risk Model to showcase added value of recent modeling and 

data incorporation Comparison of Technosylva model over previous REAX model is convincing, but this is only one 
component 

[2019 model delivered results only; cannot be re-run. So all comparisons to it require analysis of 2019 predictions 
at the CPZ level. These were performed 2019 vs. 2021 using ROC / AUC for Vegetation-caused and Conductor-

involved; Figure 17. 2019 model not significantly different from chance; 2021 model much improved.] [JET] 

Present more thorough comparison of out-of-sample (2019 ignitions) and the modeled ignition probability map 

ROC curve alone is helpful, but additional evidence adds value 

[maps of CPZ p(ign) with points] [Monday discussion with Paul] - it * might * work out to map the 2019 CPZ results. 
Hasn’t yet been pursued.  

Consider adding more data fields for equipment characterization. Explore use of thermography and equipment 
loading 

[we have and are trying for more: specific targets for 2022 models are lidar, better outage locations, more accurate 
ids on failed equipment, better meteorology data] 

Future modeling 
Identify all models in PG&E’s risk modeling ecosystem Clearly state what questions are in-scope and out-of-scope 

for each model. Explain what inputs are shared among models, how/why model designs differ, and how outputs 
are benchmarked across all models to ensure consistency. 

Create a roadmap that gives future goals and ties the Risk Model to other models. Consider including: 

Commented [BS10]: No class imbalance as MaxEnt is 

presence only. Provide MaxEnt algorithm from MaxEnt 
experts on how bootstrapping works. 

Commented [BS11]: Outline MAVF from CPUC and then 

PG&E MAVF version. Also, catastrophic, and destructive fire 

definitions. Begin with what provided in documentation. 

Commented [BS12]: Figure 17 of documentation  

Produce ROC curves again and tighten narrative for E3 

Commented [BS13]: Produce map of actual ignitions with 

probabilities. 

Commented [BS14]: IR, distribution loading example. 

Pole model use of pole loading data and transformer model 

use of electrical loading. 

Commented [BS15]: Combine with request from Sumeet 

for all PG&E risk model view. Show plan for increasingly 
coordinated plan. How use models to measure progress on 

risk reduction. (JET) 

Commented [BS16]: Also the PG&E all model view. 

Need to clarify how these constraints are evident in the 

current model. For example, how to forecast climate change 
instead of current fuels. Perhaps tie model to climate 

variables that are anticipated to change over time. 



• A process to understand effectiveness of vegetation management and system hardening, and steps to feed 
this understanding back into the Risk Model for evaluation of mitigation measures 

• A plan to evaluate how changing trends in local and global weather patterns may impact areas of ignition 
risk 

• A plan for tying the Risk Model to other models (i.e. Are model results benchmarked against each other? 
Are some model outputs used as inputs elsewhere?) 

In considering current and future model applications, identify decisions for which ignition probability or 
consequence scoring is alone more useful than risk. This may help drive equitable investment if risk scoring is 

found to favor wealthier areas 

Conduct uncertainty analysis around consequence scoring. At a minimum, show uncertainty in risk scores based 

on range around averages at each simulation location 

Consider assessing model predictive power based on both the shape and area of ROC curves. The area under 

curve (AUC) is only part of a larger picture. Two ROC with the same AUC can look drastically different. For this 
problem where the outcome of a false-negative drastically outweighs a false-positive, a curve similar to example A 

would be preferable to one similar to example B, which has the same AUC. 

 

 

Commented [BS17]: Provide information on inspection 
use of only consequence. 

Commented [BS18]: Plan to develop ranges and/or error 

bars for model outputs. 

Commented [BS19]: Review and report back on how 

interpret characterization of model ROC curves. Show that 

supports top 20% workplan. 

 


