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Project background
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Context – Why are we undertaking this initiative?

In support of the new EO Risk Paradigm, PG&E is developing a Distribution (Dx) Asset 

Risk Model (the Model), tuned for Wildfire Risk, which will:

● Provide situational awareness of the current wildfire risk on the Dx system

● Enable risk-informed decision making in the budget planning process

● Allow PG&E to report risk reduction to regulatory entities

Note: This project will be an input into and is proceeding in coordination with ongoing 

PRA risk modeling and will be validated by and is expected to be an input into EORM’s 

process.
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Phase 1 modeling complete

Milestone 1: proof of concept “backstop” spatial model (MaxEnt) built with public data

Milestone 2: PG&E data sets validated, cleaned and integrated into project “data 

pipeline”

Milestone 3: Modeling “toolkit” used to develop Where, When, and What Type models 

and all delivered as working code
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Modeling objectives

6



Why make predictions?

Planning / budgeting / prioritization of mitigation

Risk estimation and management

Operations / PSPS

Learning and discovery
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Categories of questions - each implies a different 
modeling strategy

● Where
○ What assets are at elevated risk of failure or ignition?
○ What locations experience similar conditions to locations where a 

certain type of asset has tended to fail in the past?
● When

○ Under what changing conditions is there an elevated risk of failures?
○ What is the expected count of outages over a month / year of 

operations?
● What type

○ Given an outage, what are the odds that it is associated with wires 
down or ignitions?

○ What factors affect the odds of ignitions and how are those odds 
altered through preventative work?
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Data sets and processing
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Veg-caused 
events

Wire down 
events

Outage events

Event types

Ignition events
Wire down 

events

Veg-caused 
events

Events

Asset 
attributes

Weather 
conditions

Weather 
signals

Other 
geo-spatial 

data

Salo tree 
data

11

Project data 



Feeder “pixels” and “roll-ups”
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Pixel data augmentation
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Current capabilities
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What makes this a hard problem?
● Sparse data

○ Risk of overfitting or mis-interpreting “fit” that “accurately” predicts no events

● Zero inflation
○ In some cases, events like ignitions or vegetation caused outages are impossible (wet conditions; no 

trees)

○ Those locations/times incapable of experiencing events dilute the pool of outcomes actually 

determined by asset health, environmental conditions, etc.

● Probabilities, counts, and their uncertainties
○ What we are looking for are black swan / long tail events

○ Inherently large uncertainties

○ “Standard” assumptions about variable distributions (often made for mathematical convenience) 

can lead to under-estimates of event counts

● Inferring causality
○ To assign expectation values to different risk mitigation scenarios requires models that have 

learned coefficients related to the grid attributes altered under the scenarios.

○ Models optimized around prediction alone may not be capable of modeling scenarios 15
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Maxent

Arrival process 
(Poisson/Neg. Binomial)

Event classification
Temporal trees:
e.g. using weather 
signals

Logistic classifiers:
e.g. zero inflation or
pre-classification

Standard regression tools: 
Feature engineering and 
selection

Asset grouping classifiers:
e.g. by type or 
pre-classification

Spatial filtering:
e.g. filtering on 
locations with 
fall-in trees or 
logistic classification

Synthetic controls?:
e.g. event day matching 
with non-events and 
non-event day at location 
of events

Composite model:
Assemblage of model 
components 
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Where?
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Where: via Maximum Entropy (MaxEnt) modeling
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Vegetation caused ignitions
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Vegetation caused outages
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Vegetation caused wires down
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Unknown cause outages
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Deliverables and status

Based on this modeling approach, we’ve provided Vegetation Management

1. A geo-tif raster file of vegetation-caused ignition probabilities 

2. A csv “roll-up” of expected count of annual ignitions by feeder

An earlier version of feeder roll-ups was also provided as input to the circuit 

prioritization effort.

At the request of VM, we are working to incorporate recently provided data on tree 

species into future modeling runs.
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When?
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When: Arrival process modeling:
Probability of observing N events over a given time interval/conditions
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Feeder outage rates model: inputs

Description Value
Outage data source ILIS outages

Feeder data source ED-GIS primary OH conductors

Weather signals source Meteorology team data set 

Count of GIS conductors entries 1.4M

Length of conductors studied 131,050 km

Timespan 2007-2019

Total outages 504,252

Unique feeder count 3,103

26



System wide weekly event counts: 2015-2020  
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Visualizing outages 
and covariates
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columns are weeks (2016-2019)
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Feeder attributes
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Feeder attributes of “normal” vs. top 100 outages
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Observed vs. predicted annual feeder outage count
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Annual feeder count errors

32

Error in outages per-feeder-year:

The mean is 5.7 

The median is 3.4

85th percentile is 10



Deliverables and status

Flexible framing

● Model can run with feeder-specific counts, modified by weather signals

● Model can also run on feeder attributes, modified by weather signals

● Inputs can be outages or outage subsets by cause or equipment type

Currently working on

● Better normalizing long tailed covariates like length and fall-in tree count

● Feature engineering and regularization to take better advantage of asset attributes

● Optimized runs for each equipment type

● Characterizing the degradation of performance at finer timescales
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What type?
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Unconditional wire down and ignition probabilities

E.x.: Vegetation caused outages 2015-2019

No Ignition Ignition

Count % of total % of row Count % of total %of row

Wire Down 21,557 10.3% 96.7% 734 0.35% 3.29%

No Wire Down 186,429 89.0% 99.6% 694 0.33% 0.37%
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What type: Event classification
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Regularization: fewer parameters; better fit
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Fewer parameters improve 
precision until this point, so 
we select this value of C as 
for our model



Best fit models for Conductors, Poles, and Other equipment types
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Deliverables and status

Most recently developed model

● Separate results by equipment type or event cause

● Expected applications in scenario-based risk scoring

Currently working on

● Incorporating more/new asset attribute data (i.e. on poles and conductors) into 

event metadata

● Looking at Bayesian approach to estimating similar conditional probabilities
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Phase 2 and beyond
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Phase 2 May through July

● Modeling tools and data pipeline deployed as packaged codebase into PG&E 

compute environment

● PG&E data science team knows the tools and is successfully deploying 

improvements and new models

● Joint CDA/Salo/Presence/PG&E modeling work continues, with new data sets, 

and new and/or improved models

● Model results delivering value in support of PG&E planning, risk mitigation, and 

regulatory submissions
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Q&A
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Feeder attributes
Attribute Definition

feeder_id Also called circuit id - 9 "digit" numerical identifier with leading 0 padding.

feeder_name Substation name and circuit number

district Grid district

division Grid division

region Grid region

lat feeder centroid latitude

lon feeder centroid longitude

coastal_ind 1 if the feeder is flagged as coastal; 0 otherwise

num_phases average number of phases of the feeder

length total length of the feeder's conductors

n total number of 10m pixels the feeder spans

hftd100m_zone maximum HFTD the feeder passes through

tfallin10m_cnt count of 10m pixels the feeder passes through that contain estimated fall-in 
trees

theight10m_m 90th percentile height of trees along the feeder's path

elevation100m_m average elevation of the feeder

me_veg_prob_annual Maxent estimate of expected annual number of vegetation caused outages 
on the feeder

pop_density100m_sum total population within 100m of the feeder's lines 44



45



46

Ignition locations

● 2015-2016 ignitions

● 210 points

Environmental covariates

● Vegetation, wind speeds, gust speeds, 

temperature, topography

● 10 covariates

Test locations

● 2017-2018 ignitions

● 266 points



47



48



49



50

Class Covariate Unit Spatial scale Notes

Vegetation Mean tree height (m) 100 m Mean tree height of area around asset

Tallest nearby trees (m) 100 m Calculated as maximum tree height 
in area around an asset

Wind Mean wind speed (m/s) 2,500 m From RTMA

Local wind speed 
maximum

(m/s) 2,500 m Calculated as the 99th percentile of 
local wind speeds

Gust Mean gust speed (m/s) 2,500 m From RTMA

Local gust speed 
maximum

(m/s) 2,500 m Calculated as the 99th percentile of 
local gust speeds

Temperature Mean temperature (°C) 1,000 m From MODIS LST

Local temperature 
maximum

(°C) 1,000 m Calculated as the 99th percentile of 
local temperatures

Topography Local topographic 
position

unitless 100 m From the topographic position index 
(TPI)

Landscape topographic 
position

unitless 1,000 m Calculating TPI at fine and large 
scales allows distinguishing multiple 
landforms (i.e. difference in local and 
landscape topography)



Model outputs
1. Relative probability scores

○ Units: arbitrary

○ Computes ignition probability for each asset using raw probability distributions

○ Evaluated using AUC scores

2. Omission rates
○ Units: %

○ Scales relative probability scores based on the total area evaluated

○ Can threshold rates to evaluate likely/unlikely in binary sense

○ Threshold set to > 5%

○ Evaluated using recall scores

3. Occurrence probability scores
○ Units: %

○ Scales relative probability scores to probability of ignition scores via logistic transformation of raw scores

○ Done via scaling parameter, τ,  (the probability of ignition at ‘average’ ignition locations)

○ τ calculated as (number of total ignitions) / (number of Dx assets evaluated)

○ Evaluated by summing probability scores and comparing to number of ignitions 51



Training 
2015-2016

Testing 
2017-2018

Predicted ignition 
count

229.1 200.0

Observed ignition 
count

210 266
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Vegetation ignitions
Variable

Percent 
contribution

Permutation 
importance

tree-height-max 35.1 38.6
tree-fall-in 31.9 7.2

hftd 8.8 3.5
local-topography 5 9.4

canopy-stress 4.9 5.7
temperature-avg 4.6 9.9

impervious 2.8 4.8
conductor-count 2.6 5.7

specific-humidity-avg 1.4 1.9
tree-height-avg 1.3 8.1

precipitation-avg 0.9 0.8
wind-avg 0.4 1.8

1000-hour-fuels-avg 0.3 1.1
energy-release-avg 0.1 1

burn-index-avg 0 0.5
wind-max 0 0

vapor-pressure-deficit-avg 0 0
100-hour-fuels-avg 0 0
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