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Context — Why are we doing this initiative?

In support of the new EO Risk Paradigm, PG&E is developing a Distribution (Dx)
Asset Risk Model (the Model), tuned for Wildfire Risk, which will:

e Provide situational awareness of the current wildfire risk on the Dx system
e Enable risk-informed decision making in the budget planning process
e Allow PG&E to reportrisk reduction to regulatory entities



Phase 1 key objectives and desired outcomes
(end of March 2020)

A Prototype Model has been developed for one or more Dx asset classes such
that:

e Statistical experts within PG&E verify that the Model is developed on a solid
statistical foundation

e Risk calculation methodology has been approved by EORM

e Prototype results are used to inform the Q1 Dx asset planning budget
adjustments.

e The Prototype will only consider Probability of Failure and Wildfire Risk

e MAVF and other components of assetrisk will be included in Phase I



Project schedule

Project management

Requirements gathering

Asset data review, validation, cleansing
Asset data exploration/model integration
Model design

Climate/veg spatial data layers

Backstop model(s)

Full model prototype

Documentation (and Presentations)

wh

date

Milestone 1
(Backstop Model)

8 9 10 11

1/6 113 120 127

Milestone 2
(Data Exploration)

12 13 14 15

2/3 210 217 2/24]

Milestone 3
(Phase 1 Model)

16 17 18 189
32  3f9 316 323

Note that project work commenced in Nov, 2019 - not shown on this chart for clarity
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https://docs.google.com/spreadsheets/d/1CBOZ1SXXHweXN0eMLHAy7akQQizszLUzvTOtpyLySdM/edit#gid=1333834874

W here we are now

e Requirements gathering and data research
o 17+ meetings over 2 months with key stakeholders
o Comprehensive catalog of relevant data sets, written documents defining the modeling
problem(s) and related approaches and tradeoffs

e Infrastructure - cloud-based data science environment
o jupyter/python/geopandas/rasterio
o AWS SageMaker environment - same platform as ARAD
o Teammembers have accessto: PG&E private data, collaborationtools, source code
repositories, etc

e Infrastructure - modeling in software
o Pipeline for gathering and formatting geo-spatial data
o Pipeline for augmenting any location (by lat/lon) with geo-spatial information
m Ignition sites, Dx grid, etc.
o Software systemto prepare data for, configure, execute, and post-process MaxEnt modeling
runs

e Backstop model



Asset and event data set relationships
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Batch environmental data preparation

. Choose data source(s)
2. Isolate dates
1. climate trends
2, weather at event
Isolate specific fields (bands)
Summarize with max/min/mean, etc.
Render to praject env data raster(s)
GEE (1a) and project-specific (2) pipelines
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Google EE

Our own project
pipeline?

———

# pseudo Code for GEE implessntation

® official GEE name/sccount local data

data_set_mame = ROAAMG/RTMA

bands = [WIMDY,PLET, ete.]

date_rangs = [F2016-91-01°,°2919-01-91° ]

sumnary_fa = [‘mln®, "nax', mesn’, tSpett, "¥hpet’ ]
rini_data = load_bands{data_set_nase, basds, date_range)
® onie bard per band x jussary_fn

out_data = sussmarile_data{rae_data, sussarire fn)

® Export.image. todsset, o TEFs in AWS, if possible
save_out{out_data, [resolutics, locatice, ete.])

Geo-data processing pipeline

Data storage and access

D5 config
{credentiats,

lacations, namées,
and acoess eethds)

f/— ata source (pﬂ ™
. Encapiulated details of
redshift -umm::i:esi
— ~— = Primary output is
oo DataFrame
other DB = Qv gpd.Dataframe
o *  Provides raw

connections)guery access
= Al higher level canonical

wiews of the data

misc.
Subsats (time, grid topo) _,/'l

data

—

from de_risk {spart data_source as ds
df. Emit| "dx_risk_data_coefig.yasl®)

# low level interface based on conmection comfig

conm = ds.get_connection( ‘redshift®)

tags = pd.read_sql{ "select * from SAP.tag_table’,
Con = Connj

B where 1z the data?
data_dir = ds.RASTER_DATA_DIR
dblb = di.get_raster( dry_bulb_file_nsse.tif")

® high level interface based on config
tagsd = ds, get(*inspecticn_tags')
dblbd = ds,get( raster.dry_bulb')

1.

4.
3.
4.

Asset/event augmentation

Select and load time/space points
1.  Input [g)pd.DataFrame
2. GEE input: csv
Select eny data bo augment with
Bulk lookup in raster|s) by lat/lon
Dutput augmented data
1. gpd.DataFrame
2. GEE: csv ready for gpd
Import

from du_risk isport data_source as ds
From du_risk isport geo_tagger

ds . dmit( “du_risk_data_comfig.yaml")

geo_tagger is passed whatever config it
I rlnd: to find raster data and
B interpret named ion fields
gt = geo_tagger( ds,RASTES_DATA_DIRE,
di, RASTILE_CONFIG)

fgn = ds,get(®ignitiens®) B gpd,Datafrase
ign plus = gt.supsent{ &gn,
[*dry_bulk.sean’,
VD Baan" ,
oEC. 1%

g ign_plus bedomes what Chris calls
g "wector data® in the Maxent frasssork

# All of this code iz upstreas from
# his ipynb example



Vegetation caused ignitions



Model progress - Seasonal frequency of ignitions by
Ignition cause class




Model progress - Ignitions by tree height, date, class
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Key modeling considerations

kW

lgnitions are rare events

Multiple points of failure precede an ignition

The drivers of failures include both endogenous and exogenous processes
Failures can result from instantaneous and cumulative processes

Multiple forms of uncertainty in available data

a. Relational topology unclear (e.g., hard to link outages to wire-downsto

ignitions)

b. Spatial uncertainty high (recorded positions are often imprecise)
Physical models are robust and easy to interpret, but only describe a few processes
Statistical models can identify novel failure patterns, but are easily biased in
predicting rare events
Needsto be sensitive to management activities
Needsto improve over time as new data comes in from the field



Spatial model: structure and inputs
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Ignitions 2014-2018

Dx locations from Integration
Capacity Assessment spatial files
Ignitions from PG&E internal data

Restricted to vegetation contact

PG&E Coverage

+ Veg. contact ignitions 2015-2016
+ Veg. contact ignitions 2017-2018
PG&E Distribution lines (ICA)
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High level overview of modeling approach

MaxEnt, or maximum (information) entropy, models were developed to derive

probable ranges of species given the set of locations where they have been sited.

In or case, MaxEnt models discriminate between environmental conditions at the
sites of ignitions and a set of “background” locations without reported ignitions,

where our background is the full Dx grid.
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Salo tree height data

Forest Net outputs
100m resolution
Full state coverage

Regular updates possible

Vegetation structure «:, e
Max. tree height (m) = Vea, T,
ol e
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Input covariate data

Class Covariate

Vegetation Mean tree height

Tallest nearby trees

Wind Mean wind speed

Local wind speed
maximum
Gust Mean gust speed

Local gust speed
maximum
Temperature ~ Mean temperature

Local temperature
maximum

Local topographic
position

Topography

Landscape topographic
position

Mean tree heightofareaaroundasset

Calculated as maximum tree heightin
areaaround an asset

FromRTMA

Calculated as the 99th percentile of
localwind speeds

FromRTMA

Calculated as the 99th percentile of
local gust speeds

FromMODIS LST

Calculated as the 99th percentile of
local temperatures

From the topographic position index

Unit Spatial scale Notes
(m) 100 m*
(m) 100 m*
(m/s) 2,500 m
(mvs) 2,500 m
(m/s) 2,500 m
(mVs) 2,500 m
(°C) 1,000 m
(°C) 1,000 m
unitless 100 m*
(TPI)
unitless 1,000 m*

Calculating TPl at fine and large
scales allows distinguishing multiple
landforms (i.e. difference in localand
landscape topography)

16

*can be calculated at finer spatial scales



Backstop model: results

17



Low and high risk assets
against HFTDs

At risk threshold set to produce

5% omission rate

Santa Rosa,
Sonoma county

High Fire
Threat Districts
| Tier1
7] Tier2
B Tier3

Distribution line locations
* At-risk (375,067 points)
Not at-risk (559,135 points)
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Top %5 of of predicted
Ignition probability

Santa Rosa,
Sonoma county

High Fire
Threat Districts
[ Tierl
[ Tier2
B Tier3

Distribution line locations

- Highignition probability assets ©
(top 5th percentile - 18,753 points) D
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Model performance

AUC

(probability the model
can distinguish high risk
territory from low risk
territory - 0.5 is random
chance; 1.0 is never
wrong)

Recall at 95% omission
TP/ (TP +FN)
(Fraction of ignitions
found within the high
risk territory)

Predicted ignition count

Observed ignition count

Training
(2015-2016)

0.765

0.799

229.1

210

Testing (2017-
2018)

0.755

0.781

200.0

266

Predicted to be at-risk

True

False

True

Ignition

True Positive (TP)

False Negative
(FN)

observed  Eglse

False Positive (FP)

True Negative (TN)
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Asset ignition probabilities by HFTD Tier

Normalized frequency

Tier 1 lines

0.05 0.10 0.15
Ignition probability (%)

Normalized frequency

—— Tier 2 lines

0.05 0.10 0.15
Ignition probability (%)

—— Tier 3 lines
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Feeder Name

Covelo 1101
Maolino 1102
West Point 1102
Mariposa 2102
Konocti 1102

Wise 1102 -
Fruitland 1142

Garberville 1101
Los Gatos 1106

Point Moretti 1101 4

Apple Hill 2102

Cottonwood 1101

Fitch Mountain 1113
Rio Dell 1102

Fruitland 1141 4
Antler 1101 1
Caolumbia Hill 1101 1
Otter 1101 A

Electra 1101
Dunbar 1101

| —

0

2 4 6
Ignitions on feeder

Datasourcesand how used

Ignitions data (bars) [limited to veq]

Our predictions (filtered 100 highest risk
feeders)

ICA data (filtered for inclusion)
Description

Number of ignitions per feeder. Dark blue
indicates feeders among the 100 feeders
with the highest risk score.

Comments and Caveats

Limited to feeders included in both
ignitions and ICA datasets.



At-risk Assets

1200

1000 4

800

GO0 A

400

200

4 5
lgnitions

Datasourcesand how used
Our predictions (vertical axis)
Ignition data (counts along x axis)
Description

Bar chart showing risk distribution by
feeder (y-axis) grouped by the number of
ignitions that actually occurred on that
feeder (x-axis)

Comments and Caveats

Only one feeder had 6 ignitions, and
none had 7.



Our next steps
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Ignition

Desired Outcomes
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What Is the output of our model?

Estimated risk reduction dueto decisionsrelated to:

1. Veg management
2. Grid hardening
3. Protection

- Our scope

J
o

N

Veg Contact Failure Ignition Fire




Integrating multiple functional forms

= deibrbution lines
— vegetation failures

Density

k
'iﬂg(%p) =By + =ZI Bix;

o 5 10 15 0
mizan tree height (m)

Fragility curves
e F[valuatelong-termendogenous

MaxEnt

e Calculatesp(failure) overlong

time period to characterize failure p(failure)

probabilities underaggregate e Servesasa physically-based prior

environmental conditions estimate offailure probability to
® Servesasa prior estimate of predict short-term failure

failure probability to predict probability

short-term failure probability

Decision / regression trees
e Usespriorestimates of
exogenous/endogenous failures
asfeaturesto splittrees
e (Canexperimenttoidentify the
best time scales for analysis



Discussion
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Using the thresholded predictions, we identified 375,067 assets that were at-risk,
or 40.1% of the

934,202 conductor locations (Fig. 3). Of those assets, 284,250 of the HFTD Tier 1
assets were classified

as at-risk (34.4% of 825,511 assets), 61,013 of the Tier 2 assets were classified
as at-risk (79.1%), and

29,804 of the Tier 3 assets were classified as at-risk (94.4%) based on the 2015-
2016 predictions.
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For the 2015-2016 data, the sum of all predicted ignition probabilities was 229.1,

comparedto 210 observations during that period. For the 2017-2018 data, the
sum of all predicted

ignition probabilities was 200.0 for 2018, compared to 266 observations during
that period.
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Feeder Name

Brunswick 1107 -
Paradise 1104 4
Paradise 1105 4
Westpark 1105 -
YVasona 1103 4
Beresford 0403 -
Brunswick 1103 1
Loyola 1101 -
Highlands 1104 4
Mountain View 1107 4
Paradise 1106 4
Westpark 1103 -
Westpark 1112 4
Saratoga 1113
Placer 1101 4
Alto 11237 -——
Westpark 1111
Loyvola 1102 4
Brunswick 1110 1

Woodside 1104 4

0000 0005 0010 0015 0020
At risk assets (per unit length)

Datasources and how used
Our predictions (width of bar)
ICA data (normalize by length)
Ignition data (color)
Description

Number of at risk assets normalized by
length of distribution circuit.

Colors indicates feeders that also rank
highly in ignitions per unit length!

Comments and Caveats

Paradise and Grass Valley at risk
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W hat our Phase 1 Model should do

1. Appropriately weight failure events to ensure high recall

2. Representthe multiple failure processes that lead to ignitions

3. Include predictive features that capture steady state and dynamic conditions over
multiple timescales

4. Establish simple heuristics for cross-referencing datasets that can improve over time

5. Flag outliers to evaluate whether an event represents a novel failure process or is
highly uncertain

6. Includeresults from physical modelsin a statistical modeling framework



