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1
Risk Aversion

This chapter looks at a basic concept behind modeling individual preferences in the
face of risk. As with any social science, we of course are fallible and susceptible
to second-guessing in our theories. It is nearly impossible to model many natural
human tendencies such as “playing a hunch” or “being superstitious.” However, we
can develop a systematic way to view choices made under uncertainty. Hopefully, our
models can capture the basic human tendencies enough to be useful in understanding
market behavior towards risk. In other words, even if we are not correct in predicting
behavior under risk for every individual in every circumstance, we can still make
general claims about such behavior and can still make market predictions, which
after all are based on the “marginal consumer.”

To use (vaguely) mathematical language, the understanding of this chapter is a
necessary but not sufficient condition to go further into the analysis. Because of the
importance of risk aversion in decision making under uncertainty, it is worthwhile
to first take an “historical” perspective about its development and to indicate how
economists and decision scientists progressively have elaborated upon the tools and
concepts we now use to analyze risky choices. In addition, this “history” has some
surprising aspects that are interesting in themselves. To this end, our first section in
this chapter broadly covers these retrospective topics. Subsequent sections are more
“modern” and they represent an intuitive introduction to the central contribution to
our field, that of Pratt (1964).

1.1 An Historical Perspective on Risk Aversion

As it is now widely acknowledged, an important breakthrough in the analysis of
decisions under risk was achieved when Daniel Bernoulli, a distinguished Swiss
mathematician, wrote in St Petersburg in 1738 a paper in Latin entitled: “Specimen
theoriae novae de mensura sortis,” or “Exposition of a new theory on the mea-
surement of risk.” Bernoulli’s paper, translated into English in Bernoulli (1954), is
essentially nontechnical. Its main purpose is to show that two people facing the same
lottery may value it differently because of a difference in their psychology. This idea
was quite novel at the time, since famous scientists before Bernoulli (among them
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Pascal and Fermat) had argued that the value of a lottery should be equal to its
mathematical expectation and hence identical for all people, independent of their
risk attitude.

In order to justify his ideas, Bernoulli uses three examples. One of them, the
“St Petersburg paradox” is quite famous and it is still debated today in scientific
circles. It is described in most recent texts of finance and microeconomics and for
this reason we do not discuss it in detail here. Peter tosses a fair coin repetitively
until the coin lands head for the first time. Peter agrees to give to Paul 1 ducat if head
appears on the first toss, 2 ducats if head appears only on the second toss, 4 ducats
if head appears for the first time on the third toss, and so on, in order to double the
reward to Paul for each additional toss necessary to see the head for the first time.
The question raised by Bernoulli is how much Paul would be ready to pay to Peter
to accept to play this game.

Unfortunately, the celebrity of the paradox has overshadowed the other two exam-
ples given by Bernoulli that show that, most of the time, the value of a lottery is not
equal to its mathematical expectation. One of these two examples, which presents
the case of an individual named “Sempronius,” wonderfully anticipates the central
contributions that would be made to risk theory about 230 years later by Arrow, Pratt
and others.

Let us quote Bernoulli:1

Sempronius owns goods at home worth a total of 4000 ducats and
in addition possesses 8000 ducats worth of commodities in foreign
countries from where they can only be transported by sea. However,
our daily experience teaches us that of [two] ships one perishes.

In modern-day language, we would say that Sempronius faces a risk on his wealth.
This wealth may represented by a lottery x̃, which takes on a value of 4000 ducats
with probability 1

2 (if his ship is sunk), or 12 000 ducats with probability 1
2 . We will

denote such a lottery x̃ as being distributed as (4000, 1
2 ; 12 000, 1

2 ). Its mathematical
expectation is given by:

Ex̃ ≡ 1
2 4000 + 1

2 12 000 = 8000 ducats.

Now Sempronius has an ingenious idea. Instead of “trusting all his 8000 ducats
of goods to one ship,” he now “trusts equal portions of these commodities to two
ships.” Assuming that the ships follow independent but equally dangerous routes,
Sempronius now faces a more diversified lottery ỹ distributed as

(4000, 1
4 ; 8000, 1

2 ; 12 000, 1
4 ).

1We altered Bernoulli’s probabilities to simplify the computations. In particular, Bernoulli’s original
example had one ship in ten perish.
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Indeed, if both ships perish, he would end up with his sure wealth of 4000 ducats.
Because the two risks are independent, the probability of these joint events equals
the product of the individual events, i.e. ( 1

2 )2 = 1
4 . Similarly, both ships will succeed

with probability 1
4 , in which case his final wealth amounts to 12 000 ducats. Finally,

there is the possibility that only one ship succeeds in downloading the commodities
safely, in which case only half of the profit is obtained. The final wealth of Sem-
pronius would then just amount to 8000 ducats. The probability of this event is 1

2
because it is the complement of the other two events which have each a probability
of 1

4 .
Since common wisdom suggests that diversification is a good idea, we would

expect that the value attached to ỹ exceeds that attributed to x̃. However, if we
compute the expected profit, we obtain that

Eỹ = 1
4 4000 + 1

2 8000 + 1
4 12 000 = 8000 ducats,

the same value as for Ex̃! If Sempronius would measure his well-being ex ante by
his expected future wealth, he should be indifferent about whether to diversify or
not. In Bernoulli’s example, we obtain the same expected future wealth for both
lotteries, even though most people would find ỹ more attractive than x̃. Hence,
according to Bernoulli and to modern risk theory, the mathematical expectation of a
lottery is not an adequate measure of its value. Bernoulli suggests a way to express
the fact that most people prefer ỹ to x̃: a lottery should be valued according to
the “expected utility” that it provides. Instead of computing the expectation of the
monetary outcomes, we should use the expectation of the utility of the wealth. Notice
that most human beings do not extract utility from wealth. Rather, they extract utility
from consuming goods that can be purchased with this wealth. The main insight of
Bernoulli is to suggest that there is a nonlinear relationship between wealth and the
utility of consuming this wealth.

What ultimately matters for the decision maker ex post is how much satisfaction
he or she can achieve with the monetary outcome, rather than the monetary outcome
itself. Of course, there must be a relationship between the monetary outcome and
the degree of satisfaction. This relationship is characterized by a utility function u,
which for every wealth level x tells us the level of “satisfaction” or “utility” u(x)

attained by the agent with this wealth. Of course, this level of satisfaction derives
from the goods and services that the decision maker can purchase with a wealth level
x. While the outcomes themselves are “objective,” their utility is “subjective” and
specific to each decision maker, depending upon his or her tastes and preferences.
Although the function u transforms the objective result x into a perception u(x) by
the individual, this transformation is assumed to exhibit some basic properties of
rational behavior. For example, a higher level of x (more wealth) should induce a
higher level of utility: the function should be increasing in x. Even for someone
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who is very altruistic, a higher x will allow them to be more philanthropic. Readers
familiar with indirect utility functions from microeconomics (essentially utility over
budget sets, rather than over bundles of goods and services) can think of u(x) as
essentially an indirect utility of wealth, where we assume that prices for goods and
services are fixed. In other words, we may think of u(x) as the highest achievable
level of utility from bundles of goods that are affordable when our income is x.

Bernoulli argues that if the utility u is not only increasing but also concave in
the outcome x, then the lottery ỹ will have a higher value than the lottery x̃, in
accordance with intuition. A twice-differentiable function u is concave if and only
if its second derivative is negative, i.e. if the marginal utility u′(x) is decreasing in x.2

In order to illustrate this point, let us consider a specific example of a utility function,
such as u(x) = √

x, which is an increasing and concave function of x. Using these
preferences in Sempronius’s problem, we can determine the expectation of u(x):

Eu(x̃) = 1
2

√
4000 + 1

2

√
12 000 = 86.4

Eu(ỹ) = 1
4

√
4000 + 1

2

√
8000 + 1

4

√
12 000 = 87.9.

Because lottery ỹ generates a larger expected utility than lottery x̃, the former is
preferred by Sempronius. The reader can try using concave utility functions other
than the square-root function to obtain the same type of result. In the next section,
we formalize this result.

Notice that the concavity of the relationship between wealth x and satisfac-
tion/utility u is quite a natural assumption. It simply implies that the marginal utility
of wealth is decreasing with wealth: one values a one-ducat increase in wealth
more when one is poorer than when one is richer. Observe that, in Bernoulli’s
example, diversification generates a mean-preserving transfer of wealth from the
extreme events to the mean. Transferring some probability weight from x = 4000
to x = 8000 increases expected utility. Each probability unit transferred yields an
increase in expected utility equaling u(8000) − u(4000). On the contrary, trans-
ferring some probability weight from x = 12 000 to x = 8000 reduces expected
utility. Each probability unit transferred yields a reduction in expected utility equal-
ing u(12 000) − u(8000). But the concavity of u implies that

u(8000) − u(4000) > u(12 000) − u(8000), (1.1)

i.e. that the positive effect of these combined transfers must dominate the negative
effect. This is why all investors with a concave utility would support Sempronius’s
strategy to diversify risks.

2For simplicity, we maintain the assumption that u is twice differentiable throughout the book.
However, a function need not be differentiable to be concave. More generally, a function u is concave if
and only if λu(a) + (1 − λ)u(b) is smaller than u(λa + (1 − λ)b) for all (a, b) in the domain of u and
all scalars λ in [0, 1]. A function must, however, be continuous to be concave.
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Figure 1.1. Measuring the expecting utility of final wealth (4000, 1
2 ; 12000, 1

2 ).

1.2 Definition and Characterization of Risk Aversion

We assume that the decision maker lives for only one period, which implies that he
immediately uses all his final wealth to purchase and to consume goods and services.
Later in this book, we will disentangle wealth and consumption by allowing the agent
to live for more than one period. Final wealth comes from initial wealth w plus the
outcome of any risk borne during the period.

Definition 1.1. An agent is risk-averse if, at any wealth level w, he or she dislikes
every lottery with an expected payoff of zero: ∀w, ∀z̃ with Ez̃ = 0, Eu(w + z̃) �
u(w).

Observe that any lottery z̃ with a non-zero expected payoff can be decomposed
into its expected payoff Ez̃ and a zero-mean lottery z̃−Ez̃. Thus, from our definition,
a risk-averse agent always prefers receiving the expected outcome of a lottery with
certainty, rather than the lottery itself. For an expected-utility maximizer with a
utility function u, this implies that, for any lottery z̃ and for any initial wealth w,

Eu(w + z̃) � u(w + Ez̃). (1.2)

If we consider the simple example from Sempronius’s problem, with only one ship
the initial wealth w equals 4000, and the profit z̃ takes the value 8000 or 0 with equal
probabilities. Because our intuition is that Sempronius must be risk averse, it must
follow that

1
2u(12 000) + 1

2u(4000) � u(8000). (1.3)

If Sempronius could find an insurance company that would offer full insurance at
an actuarially fair price of Ez̃ = 4000 ducats, Sempronius would be better off by
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purchasing the insurance policy. We can check whether inequality (1.3) is verified
in Figure 1.1. The right-hand side of the inequality is represented by point ‘f’ on
the utility curve u. The left-hand side of the inequality is represented by the middle
point on the arc ‘ae’, i.e. by point ‘c’. This can immediately be checked by observing
that the two triangles ‘abc’and ‘cde’are equivalent, since they have the same base
and the same angles. We observe that ‘f’ is above ‘c’: ex ante, the welfare derived
from lottery z̃ is smaller than the welfare obtained if one were to receive its expected
payoff Ez̃ with certainty. In short, Sempronius is risk-averse. From this figure, we
see that this is true whenever the utility function is concave. The intuition of the
result is very simple: if marginal utility is decreasing, then the potential loss of
4000 reduces utility more than the increase in utility generated by the potential gain
of 4000. Seen ex ante, the expected utility is reduced by these equally weighted
potential outcomes.

It is noteworthy that Equations (1.1) and (1.3) are exactly the same. The prefer-
ence for diversification is intrinsically equivalent to risk aversion, at least under the
Bernoullian expected-utility model.

Using exactly the opposite argument, it can easily be shown that, if u is convex,
the inequality in (1.2) will be reversed. Therefore, the decision maker prefers the
lottery to its mathematical expectation and he reveals in this way his inclination for
taking risk. Such individual behavior will be referred to as risk loving. Finally, if u

is linear, then the welfare Eu is linear in the expected payoff of lotteries. Indeed, if
u(x) = a + bx for all x, then we have

Eu(w + z̃) = E[a + b(w + z̃)] = a + b(w + Ez̃) = u(w + Ez̃),

which implies that the decision maker ranks lotteries according to their expected
outcome. The behavior of this individual is called risk-neutral.

In the next proposition, we formally prove that inequality (1.2) holds for any
lottery z̃ and any initial wealth w if and only if u is concave.

Proposition 1.2. A decision maker with utility function u is risk-averse, i.e. inequal-
ity (1.2) holds for all w and z̃, if and only if u is concave.

Proof. The proof of sufficiency is based on a second-order Taylor expansion of
u(w + z) around w + Ez̃. For any z, this yields

u(w + z) = u(w + Ez̃) + (z − Ez̃)u′(w + Ez̃) + 1
2 (z − Ez̃)2u′′(ξ(z))

for some ξ(z) in between z and Ez̃. Because this must be true for all z, it follows
that the expectation of u(w + z̃) is equal to

Eu(w + z̃) = u(w + Ez̃) + u′(w + Ez̃)E(z̃ − Ez̃) + 1
2E[(z̃ − Ez̃)2u′′(ξ(z̃))].
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Observe now that the second term of the right-hand side above is zero, since E(z̃ −
Ez̃) = Ez̃ − Ez̃ = 0. In addition, if u′′ is uniformly negative, then the third term
takes the expectation of a random variable (z̃−Ez̃)2u′′(ξ(z̃)) that is always negative,
as it is the product of a squared scalar and negative u′′. Hence, the sum of these three
terms is less than u(w + Ez̃). This proves sufficiency.

Necessity is proven by contradiction. Suppose that u is not concave. Then, there
must exist some w and some δ > 0 for which u′′(x) is positive in the interval
[w − δ, w + δ]. Now take a small zero-mean risk ε̃ such that the support of final
wealth w+ε̃ is entirely contained in (w−δ, w+δ). Using the same Taylor expansion
as above yields

Eu(w + ε̃) = u(w) + 1
2E[ε̃2u′′(ξ(ε̃))].

Because ξ(ε̃) has a support that is contained in [w − δ, w + δ] where u is locally
convex, u′′(ξ(ε̃)) is positive for all realizations of ε̃. Consequently, it follows that
E[ε̃2u′′(ξ(ε̃))] is positive, and Eu(w + ε̃) is larger than u(w). Thus, accepting the
zero-mean lottery ε̃ raises welfare and the decision maker is not risk-averse. This is
a contradiction.

The above proposition is in fact nothing more than a rewriting of the famous
Jensen inequality. Consider any real-valued function φ. Jensen’s inequality states
that Eφ(ỹ) is smaller than φ(Eỹ) for any random variable ỹ if and only if φ is
a concave function. It builds a bridge between two alternative definitions of the
concavity of u: the negativity of u′′ and the property that any arc linking two points
on curve u must lie below this curve. Figure 1.1 illustrates this point. It is intuitive
that decreasing marginal utility (u′′ < 0) means risk aversion. In a certain world,
decreasing marginal utility means that an increase in wealth by 100 dollars has
a positive effect on utility that is smaller than the effect of a reduction in wealth
by 100 dollars. Then, in an uncertain world, introducing the risk to gain or to lose
100 dollars with equal probability will have a negative net impact on expected utility.
In expectation, the benefit of the prospect of gaining 100 dollars is overweighted by
the cost of the prospect of losing 100 dollars with the same probability. Over the last
two decades, many prominent researchers in the field have challenged the idea that
risk aversion comes only from decreasing marginal utility. Some even challenged
the idea itself, that there should be any link between the two.3

1.3 Risk Premium and Certainty Equivalent

A risk-averse agent is an agent who dislikes zero-mean risks. The qualifier “zero-
mean” is very important. A risk-averse agent may like risky lotteries if the expected

3This question will be discussed in the last chapter of this book. Yaari (1987) provides a model that
is dual to expected utility, where agents may be risk-averse in spite of the fact that their utility is linear
in wealth.
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payoffs that they yield are large enough. Risk-averse investors may want to purchase
risky assets if their expected returns exceed the risk-free rate. Risk-averse agents
may dislike purchasing insurance if it is too costly to acquire. In order to determine
the optimal trade-off between the expected gain and the degree of risk, it is useful
to quantify the effect of risk on welfare. This is particularly useful when the agent
subrogates the risky decision to others, as is the case when we consider public safety
policy or portfolio management by pension funds, for example. It is important to
quantify the degree of risk aversion in order to help people to know themselves
better, and to help them to make better decisions in the face of uncertainty. Most
of this book is about precisely this problem. Clearly, people have different attitudes
towards risks. Some are ready to spend more money than others to get rid of a
specific risk. One way to measure the degree of risk aversion of an agent is to ask
her how much she is ready to pay to get rid of a zero-mean risk z̃. The answer to this
question will be referred to as the risk premium Π associated with that risk. For an
agent with utility function u and initial wealth w, the risk premium must satisfy the
following condition:

Eu(w + z̃) = u(w − Π). (1.4)

The agent ends up with the same welfare either by accepting the risk or by paying the
risk premium Π . When risk z̃ has an expectation that differs from zero, we usually
use the concept of the certainty equivalent. The certainty equivalent e of risk z̃ is the
sure increase in wealth that has the same effect on welfare as having to bear risk z̃,
i.e.

Eu(w + z̃) = u(w + e). (1.5)

When z̃ has a zero mean, comparing (1.4) and (1.5) implies that the certainty equiv-
alent e of z̃ is equal to minus its its risk premium Π .

A direct consequence of Proposition 1.2 is that the risk premium Π is nonnegative
when u is concave, i.e. when she is risk-averse. In Figure 1.2, we measure Π for
the risk (−4000, 1

2 ; 4000, 1
2 ) for initial wealth w = 8000. Notice first that the risk

premium is zero when u is linear, and it is nonpositive when u is convex.
One very convenient property of the risk premium is that it is measured in the

same units as wealth, e.g. we can measure Sempronius’s risk premium in ducats.
Although the measure of satisfaction or utility is hard to compare between dif-
ferent individuals—what would it mean to say Sempronius was “happier” than
Alexander?—the risk premium is not. We can easily determine whether Sempro-
nius or Alexander is more affected by risk z̃ by comparing their two risk premia.

The risk premium is a complex function of the distribution of z̃, of initial wealth
w and of the utility function u. We can estimate the amount that the agent is ready
to pay for the elimination of this zero-mean risk by considering small risks. Assume
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Figure 1.2. Measuring the risk premium P of risk (−4000, 1
2 ; 4000, 1

2 )

when initial wealth is w = 8000.

that Ez̃ = 0. Using a second-order and a first-order Taylor approximation for the
left-hand side and the right-hand side of equation (1.4), respectively, we obtain that

u(w − Π) � u(w) − Πu′(w)

and

Eu(w + z̃) � E[u(w) + zu′(w) + 1
2 z̃2u′′(z)]

= u(w) + u′(w)Ez̃ + 1
2u′′(w)Ez̃2

= u(w) + 1
2σ 2u′′(w),

where Ez̃ = 0 and σ 2 = Ez̃2 is the variance of the outcome of the lottery. Replacing
these two approximations in equation (1.4) yields

Π � 1
2σ 2A(w), (1.6)

where the function A is defined as

A(w) = −u′′(w)

u′(w)
. (1.7)

Under risk aversion, function A is positive. It would be zero or negative respectively
for a risk-neutral or risk-loving agent. A(·) is hereafter referred to as the degree
of absolute risk aversion of the agent. From (1.6), we see that the risk premium
associated with risk ε̃ for an agent with wealth w is approximately equal to one-half
the product of the variance of z̃ and the degree of absolute risk aversion of the agent
evaluated at w. Equation (1.6) is known as the Arrow–Pratt approximation, as it was
developed independently by Arrow (1963) and Pratt (1964).
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The cost of risk, as measured by the risk premium, is approximately proportional
to the variance of its payoffs. Thus, the variance might appear to be a good measure
of the degree of riskiness of a lottery. This observation induced many authors to use
a mean–variance decision criterion for modeling behavior under risk. In a mean–
variance model, we assume that individual risk attitudes depend only upon the mean
and the variance of the underlying risks. However, the validity of these models is
dependent on the degree of accuracy of the approximation in (1.6), which can be
considered accurate only when the risk is small or in very special cases. In such
cases, the mean–variance approach for decisions under risk, which has historically
played a very important role in the development of the theory of finance, can be
seen as a special case of the expected-utility theory. In most cases however, the risk
premium associated with any (large) risk will also depend upon the other moments
of the distribution of the risk, not just its mean and variance. For example, it seems
intuitive that whether or not x̃ is symmetrically distributed about its mean matters
for determining the risk premium. The degree of skewness (i.e. third moment) might
very well affect the desirability of a risk. Hence, two risks with the same mean and
variance, but one with a distribution that is skewed to the right and the other with
a distribution that is skewed to the left, should not be expected to necessarily have
the same risk premium. A similar argument can be made about the kurtosis (fourth
moment), which is linked to the probability mass in the tails of the distribution.

At this stage, it is worth noting that, at least for small risks, the risk premium
increases with the size of the risk proportionately to the square of this size. To see
this, let us assume that z̃ = kε̃, with Eε̃ = 0. Parameter k can be interpreted as the
size of the risk. When k tends to zero, the risk becomes very small. Of course, the
risk premium is a function of the size of the risk. We may expect that this function
Π(k) is increasing in k. We are interested in describing the functional form linking
the risk premium Π to the size k of the risk. Because the variance of z̃ equals k2

times the variance of ε̃,4 we obtain that

Π(k) � 1
2k2σ 2

ε̃ A(w),

i.e. the risk premium is approximately proportional to the square of the size of
the risk. From this observation, we can observe directly that, not only does Π(k)

approach zero as k approaches zero, but also Π ′(0) = 0. This is an important
property of expected-utility theory. At the margin, accepting a small zero-mean
risk has no effect on the welfare of risk-averse agents! We say that risk aversion is a

4The general formula is

var(ax̃ + bỹ) = a2 var(x̃) + b2 var(ỹ) + 2ab cov(x̃, ỹ).
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second-order phenomenon.5 “In the small,” we—the expected-utility maximizers—
are all risk neutral.

Proposition 1.3. If the utility function is differentiable, the risk premium tends to
zero as the square of the size of the risk.

Proof. In the following, we prove formally that Π ′(0) = 0, as suggested by the
Arrow–Pratt approximation in our comments above. The relationship between Π and
k can be obtained by fully differentiating the equation Eu(w + kε̃) = u(w −Π(k))

with respect to k. This yields

Π ′(k) = −Eε̃u′(w + kε̃)

u′(w − Π(k))
. (1.8)

We directly infer that Π ′(0) = 0, since by assumption Eε̃ = 0.

1.4 Degree of Risk Aversion

Let us consider the following simple decision problem. An agent is offered a take-
it-or-leave-it offer to accept lottery z̃ with mean µ and variance σ 2. Of course, the
optimal decision is to accept the lottery if

Eu(w + z̃) � u(w), (1.9)

or, equivalently, if the certainty equivalent e of z̃ is positive. In the following, we
examine how this decision is affected by a change in the utility function.

Notice at this stage that an increasing linear transformation ofu has no effect on the
decision maker’s choice, and on certainty equivalents. Indeed, consider a function
v(·) such that v(x) = a + bu(x) for all x, for some pair of scalars a and b, where
b > 0. Then, obviously Ev(w + z̃) � v(w) yields exactly the same restrictions on
the distribution of z̃ as condition (1.9). The same analysis can be done on equation
(1.5) defining certainty equivalents. The neutrality of certainty equivalents to linear
transformations of the utility function can be verified in the case of small risks by
using the Arrow–Pratt approximation. If v ≡ a + bu, it is obvious that

A(x) = −v′′(x)

v′(x)
= −bu′′(x)

bu′(x)
= −u′′(x)

u′(x)

for all x. Thus, by (1.6), risk premia for small risks are not affected by the linear
transformation. Because the certainty equivalent equals the mean payoff of the risk
minus the risk premium, the same neutrality property holds for certainty equivalents.

5This property in general models, not restricted to expected utility, is called “second-order risk
aversion.”Within the expected-utility model, this property relies on the assumption that the utility function
is differentiable.



14 1. Risk Aversion

Limiting the analysis to small risks, we see from this analysis that agents with a
larger absolute risk aversion A(w) will be more reluctant to accept small risks. The
minimum expected payoff that makes the risk acceptable for them will be larger.
This is why we say that A is a measure of the degree of risk aversion of the decision
maker. From a more technical viewpoint, A = −u′′/u′ is a measure of the degree
of concavity of the utility function. It measures the speed at which marginal utility
is decreasing.

We are now interested in extending these observations to any risk, not only small
risks. We consider the following definition for comparative risk aversion.

Definition 1.4. Suppose that agents u and v have the same wealth w, which is
arbitrary. An agent v is more risk-averse than another agent u with the same initial
wealth if any risk that is undesirable for agent u is also undesirable for agent v. In
other words, the risk premium of any risk is larger for agent v than for agent u.

This must be true independently of the common initial wealth level w of the two
agents. If this definition were restricted to small risks, we know from the above
analysis that this would be equivalent to requiring that

Av(w) = −v′′(w)

v′(w)
� −u′′(w)

u′(w)
= Au(w),

for all w. If limited to small risks, v is more risk-averse than u if function Av is
uniformly larger than Au. We say in this case that v is more concave than u in
the sense of Arrow–Pratt. It is important to observe that this is equivalent to the
condition that v is a concave transformation of u, i.e. that there exists an increasing
and concave function φ such that v(w) = φ(u(w)) for all w. Indeed, we have that
v′(w) = φ′(u(w))u′(w) and

v′′(w) = φ′′(u(w))(u′(w))2 + φ′(u(w))u′′(w),

which implies that

Av(w) = Au(w) + −φ′′(u(w))u′(w)

φ′(u(w))
.

Thus, Av is uniformly larger than Au if and only if φ is concave. This is equivalent to
requiring that Av be uniformly larger than Au or that v be a concave transformation
of u. It yields that agent v values small risks less than agent u. Do we need to impose
more restrictions to guarantee that agent v values any risk less than agent u, i.e. that v
is more risk-averse than u? The following proposition, which is due to Pratt (1964),
indicates that no additional restriction is required.

Proposition 1.5. The following three conditions are equivalent.

(a) Agent v is more risk-averse than agent u, i.e. the risk premium of any risk is
larger for agent v than for agent u.
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(b) For all w, Av(w) � Au(w).

(c) Function v is a concave transformation of function u : ∃φ(·) with φ′ > 0 and
φ′′ � 0 such that v(w) = φ(u(w)) for all w.

Proof. We have already shown that (b) and (c) are equivalent. That (a) implies (b)
follows directly from the Arrow–Pratt approximation. We now prove that (c) implies
(a). Consider any lottery z̃. Let Πu and Πv denote the risk premium for zero-mean
lottery z̃ of agent u and agent v, respectively. By definition, we have that

v(w − Πv) = Ev(w + z̃) = Eφ(u(w + z̃)).

Define random variable ỹ as ỹ = u(w + z̃). Because φ is concave, Eφ(ỹ) is smaller
than φ(Eỹ) by Jensen’s inequality. It thus follows that

v(w − Πv) � φ(Eu(w + z̃)) = φ(u(w − Πu)) = v(w − Πu).

Because v is increasing, this implies that Πv is larger than Πu.

In the case of small risks, the only thing that we need to know to determine whether
a risk is desirable is the degree of concavity of u locally at the current wealth level
w. For larger risks, the proposition above shows that we need to know much more to
take a decision. Namely, we need to know the degree of concavity of u at all wealth
levels. The degree of concavity must be increased at all wealth levels to guarantee
that a change in u makes the decision maker more reluctant to accept risks. If v

is locally more concave at some wealth levels and is less concave at other wealth
levels, the comparative analysis is intrinsically ambiguous.

To illustrate the proposition, let us go back to the example of Sempronius’s single
ship yielding outcome z̃ = (0, 1

2 ; 8000, 1
2 ), with a initial wealth w0 = 4000 ducats.

If Sempronius’s utility function is u(w) = √
w, his certainty equivalent of z̃ equals

eu = 3464.1, since

1
2

√
4000 + 1

2

√
12 000 = 86.395 = √

7464.1

Alternatively, suppose that Sempronius’s utility function is v(w) = ln(w), which is
also increasing and concave. It is easy to check that v is more concave than u in the
sense of Arrow–Pratt. Indeed, these functions yield

Av(w) = 1

w
� 1

2w
= Au(w)

for all w. From the above proposition, this change in utility should reduce the
certainty equivalent of any risk. In the case of w0 = 4000 and z̃ ∼ (0, 1

2 ; 8000, 1
2 ),

the certainty equivalent of z̃ under v equals ev = 2928.5, since

1
2 ln(4000) + 1

2 ln(12 000) = 8.8434 = ln(6928.5).



16 1. Risk Aversion

Thus, ev is smaller than eu. Notice that the risk premium Πv = 1071.5 under v

is approximately twice the risk premium Πu = 535.9. This was predicted by the
Arrow–Pratt approximation, since Av is equal to 2Au.

1.5 Decreasing Absolute Risk Aversion and Prudence

We have seen that risk aversion is driven by the fact that one’s marginal utility
is decreasing with wealth. In this section, we examine another question related to
increasing wealth. Namely, we are interested in determining how the risk premium
for a given zero-mean risk z̃ is affected by a change in initial wealth w. Arrow
argued that intuition implies that wealthier people are generally less willing to pay
for the elimination of fixed risk. A lottery to gain or lose 100 with equal probability
is potentially life-threatening for an agent with initial wealth w = 101, whereas it
is essentially trivial for an agent with wealth w = 1 000 000. The former should be
ready to pay more than the latter for the elimination of risk. We can check that this
property holds for the square-root utility function, with Π = 43.4 when w = 101
and Π = 0.0025 when w = 1 000 000. If wealth is measured in euros, the individual
would be willing to pay over 43 euros to avoid the risk when wealth is w = 101,
whereas the same individual would not even pay one euro cent to get rid of this risk
when wealth is one million euros! In the following, we characterize the set of utility
functions that have this property.

The risk premium Π = π(w) as a function of initial wealth w can be evaluated
by solving

Eu(w + z̃) = u(w − π(w)) (1.10)

for all w. Fully differentiating (1.10) with respect to w yields

Eu′(w + z̃) = (1 − π ′(w))u′(w − π),

or, equivalently,

π ′(w) = u′(w − π) − Eu′(w + z̃)

u′(w − π)
. (1.11)

Thus, the risk premium is decreasing with wealth if and only if

Ev(w + z̃) � v(w − π(w)), (1.12)

where function v ≡ −u′ is defined as minus the derivative of function u. Because
the function v is increasing, we can also interpret it as another utility function.
Condition (1.12) then just states that the risk premium of agent v is larger than
the risk premium π of agent u. From Proposition 1.5, this is true if and only if v

is more concave than u in the sense of Arrow–Pratt, that is, if −u′ is a concave
transformation of u. For this utility v, the measure of absolute risk aversion is
Av = A−u′ = −u′′′/u′′. This measure has several uses, which will be made clearer
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later in this book. For this reason, without justifying the terminology at this stage,
we will define P(w) = −u′′′(w)/u′′(w) as the degree of absolute prudence of the
agent with utility u. It follows from (1.12) that −u′ is more concave than u if and
only if

P(w) � A(w)

for all w. We conclude that condition P � A uniformly is necessary and sufficient
to guarantee that an increase in wealth reduces risk premia. Because

A′(w) = A(w)[A(w) − P(w)],
condition P � A is equivalent to the condition A′ � 0. We obtain the following
proposition.

Proposition 1.6. The risk premium associated to any risk z̃ is decreasing in wealth
if and only if absolute risk aversion is decreasing; or equivalently if and only if
prudence is uniformly larger than absolute risk aversion.

Observe that the utility function u(w) = √
w satisfies this condition. Indeed,

we have Au(w) = 1
2w−1, which is decreasing. This can alternatively checked by

observing that v(w) = − 1
2w−1/2 and Av(w) = Pu(w) = 1.5w−1, which is uni-

formly larger than Au(w). Notice that Decreasing Absolute Risk Aversion (DARA)
requires that the third derivative of the utility function be positive. Otherwise, pru-
dence would be negative, which would imply that P < A: a condition that implies
that absolute risk aversion would be increasing in wealth. Thus, DARA, a very
intuitive condition, requires the necessary (but not sufficient) condition that u′′′ be
positive, or that marginal utility be convex.

1.6 Relative Risk Aversion

Absolute risk aversion is the rate of decay for marginal utility. More particularly,
absolute risk aversion measures the rate at which marginal utility decreases when
wealth is increased by one euro.6 If the monetary unit were the dollar, absolute risk
aversion would be a different number. In other words, the index of absolute risk
aversion is not unit free, as it is measured per euro (per dollar, or per yen).

Economists often prefer unit-free measurements of sensitivity. To this end, define
the index of relative risk aversion R as the rate at which marginal utility decreases

6In general, the growth rate for a function f (x) is defined as

df (x)

dx
· 1

f (x)
.

Since marginal utility u′(x) declines in wealth, its growth rate is negative. The absolute value of this
negative growth rate, which is the measure of absolute risk aversion, is called the decay rate.
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when wealth is increased by one percent. In terms of standard economic theory, this
measure is simply the wealth-elasticity of marginal utility. It can be computed as

R(w) = −du′(w)/u′(w)

dw/w
= −wu′′(w)

u′(w)
= wA(w). (1.13)

Note that the measure of relative risk aversion is simply the product of wealth and
absolute risk aversion.

The (absolute) risk premium and the index of absolute risk aversion are linked
by the Arrow–Pratt approximation and by Propositions 1.5 and 1.6. We can develop
analogous kinds of results for relative risk aversion. Suppose that your initial wealth
w is invested in a portfolio whose return z̃ over the period is uncertain. Let us assume
that Ez̃ = 0. Which share of your initial wealth are you ready to pay to get rid of
this proportional risk? The solution to this problem is referred to as the relative
risk premium Π̂ . This measure also is a unit-free measure, unlike the absolute risk
premium, which is measured in euros. It is defined implicitly via the following
equation:

Eu(w(1 + z̃)) = u(w(1 − Π̂)). (1.14)

Obviously, the relative risk premium and the absolute risk premium are equal if
we normalize initial wealth to unity. More generally, the relative risk premium for
proportional risk z̃ equals the absolute risk premium for absolute risk wz̃, divided by
initial wealth w: Π̂(z̃) = Π(wz̃)/w. From this observation, we obtain the fact that,
if agent v is more risk-averse than agent u with the same initial wealth, then agent v

will be ready to pay a larger share of his wealth than agent u to insure against a given
proportional risk z̃. Moreover, if σ 2 denotes the variance of z̃, then the variance of
wz̃ equals w2σ 2. Using the Arrow–Pratt approximation thus yields

Π̂(z̃) = Π(wz̃)

w
�

1
2w2σ 2A(w)

w
= 1

2σ 2R(w). (1.15)

The relative risk premium is approximately equal to half of the variance of the pro-
portional risk times the index of relative risk aversion. This can be used to establish
a range for acceptable degrees of risk aversion. Suppose that one’s wealth is subject
to a risk of a gain or loss of 20% with equal probability. What is the range that one
would find reasonable for the share of wealth Π that one would be ready to pay to
get rid of this zero-mean risk? From our various experiments in class, we found that
most people would be ready to pay between 2% and 8% of their wealth. Because
risk z̃ in this experiment has a variance of 0.5(0.2)2 + 0.5(−0.2)2 = 0.04, using
approximation (1.15) yields a range for relative risk aversion between 1 and 4. This
information will be useful later in this book.

There is no definitive argument for or against decreasing relative risk aversion.
Arrow originally conjectured that relative risk aversion is likely to be constant, or
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perhaps increasing, although he stated that the intuition was not as clear as was
the intuition for decreasing absolute risk aversion. Since then, numerous empirical
studies have offered conflicting results. We might also try to examine this question
by introspection. If your wealth would increase, would you want to devote a larger
or a smaller share of your wealth to get rid of a given zero-mean proportional risk?
For example, what would you pay to avoid the risk of gaining or losing 20% of
your wealth, each with an equal probability? If the share is decreasing with wealth,
you have decreasing relative risk aversion. There are two contradictory effects here
that need to be considered. On the one hand, under the intuitive DARA assumption,
becoming wealthier also means becoming less risk-averse.This effect tends to reduce
Π . But, on the other hand, becoming wealthier also means facing a larger absolute
risk wz̃. This effect tends to raise Π . There is no clear intuition as to whether the first
effect or the second effect will dominate. For example, many of the classic models in
macroeconomics are based on relative risk aversion being constant over all wealth
levels, which is implicitly assuming that our two effects exactly cancel each other
out. Of course, there also is no a priori reason to believe that the dominant effect will
not change over various wealth levels. For instance, some recent empirical evidence
indicates a possible “U-shape” for relative risk aversion, with R decreasing at low
wealth levels, then leveling off somewhat before increasing at higher wealth levels.

1.7 Some Classical Utility Functions

As already noted above, expected-utility (EU) theory has many proponents and
many detractors. In Chapter 13, we examine some generalizations of the EU crite-
rion that satisfy those who find expected utility too restrictive. But researchers in
both economics and finance have long considered—and most of them still do—EU
theory as an acceptable paradigm for decision making under uncertainty. Indeed,
EU theory has a long and prominent place in the development of decision making
under uncertainty. Even detractors of the theory use EU as a standard by which to
compare alternative theories. Moreover, many of the models in which EU theory
has been applied can be modified, often yielding better results.

Whereas the current trend is to generalize the EU model, researchers often restrict
EU criterion by considering a specific subset of utility functions. This is done to
obtain tractable solutions to many problems. It is important to note the implications
that derive from the choice of a particular utility function. Some results in the
literature may be robust enough to apply for all risk-averse preferences, while others
might be restricted to applying only for a narrow class of preferences. In this section,
we examine several particular types of utility functions that are often encountered
in the economics and the finance literature. Remember that utility is unique only up
to a linear transformation.
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Historically, much of the theory of finance was developed during the 1960s by
considering the subset of utility functions that are quadratic of the form

u(w) = aw − 1
2w2, for w � a.

Note that the domain of wealth on which u is defined comes from the necessary
requirement that u be nondecreasing, which is true only if w is smaller than a.
This set of functions is useful because the EU generated by any distribution of final
wealth is a function of only the first two moments of this distribution:

Eu(w̃) = aEw̃ − 1
2Ew̃2.

Therefore, in this case, the EU theory simplifies to a mean–variance approach to
decision making under uncertainty. However, as already discussed, it is very hard to
believe that preferences among different lotteries be determined only by the mean
and variance of these lotteries.

Above wealth level a, marginal utility becomes negative. Since quadratic utility
is decreasing in wealth for w > a, many people might feel this is not appropriate as
a utility function. However, it is important to remember that we are trying to model
human behavior with mathematical models. For example, if the quadratic utility
function models your behavior quite well with a = 100 million euros, is it really
a problem that this function declines for higher wealth levels? The point is that the
quadratic utility might work well for more realistic wealth levels, and if it does, we
should not be overly concerned about its properties at unrealistically high wealth
levels. However, the quadratic utility function has another property that is more
problematic. Namely, the quadratic utility functions exhibit increasing absolute risk
aversion:

A(w) = 1

a − w
⇒ A′(w) = 1

(a − w)2 > 0.

For this reason, quadratic utility functions are not as in fashion anymore.
A second set of classical utility functions is the set of so-called constant-absolute-

risk-aversion (CARA) utility functions, which are exponential functions character-
ized by

u(w) = −exp(−aw)

a
,

where a is some positive scalar. The domain of these functions is the real line. The
distinguishing feature of these utility functions is that they exhibit constant absolute
risk aversion, with A(w) = a for all w. It can be shown that the Arrow–Pratt
approximation is exact when u is exponential and w̃ is normally distributed with
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mean µ and variance σ 2. Indeed, we can take expectations to see that

Eu(w̃)

= −1

σa
√

2π

∫
exp(−aw) exp

(
− (w − µ)2

2σ 2

)
dw

= −1

a
exp(−a(µ − 1

2aσ 2))

[
1

σ
√

2π

∫
exp

(
− (w − (µ − 1

2aσ 2))2

2σ 2

)
dw

]

= −1

a
exp(−a(µ − 1

2aσ 2)) = u(µ − 1
2aσ 2). (1.16)

The third equality comes from the fact that the bracketed term is the integral of the
density of the normal distribution N(µ − 1

2aσ 2, σ ), which must be equal to unity.
Thus, the risk premium is indeed equal to 1

2σ 2A(w). In this very specific case, we
obtain that the Arrow–Pratt approximation is exact. The fact that risk aversion is
constant is often useful in analyzing choices among several alternatives. As we will
see later, this assumption eliminates the income effect when dealing with decisions
to be made about a risk whose size is invariant to changes in wealth. However, this
is often also the main criticism of the CARA utility, since absolute risk aversion is
constant rather than decreasing.

Finally, one set of preferences that has been by far the most used in the literature is
the set of power utility functions. Researchers in finance and in macroeconomics are
so accustomed to this restriction that many of them do not even mention it anymore
when they present their results. Suppose that

u(w) = w1−γ

1 − γ
for w > 0.

The scalar γ is chosen so that γ > 0, γ �= 1. It is easy to show that γ equals the
degree of relative risk aversion, since A(w) = γ /w and R(w) = γ for all w. Thus,
this set exhibits decreasing absolute risk aversion and constant relative risk aversion,
which are two reasonable assumptions. For this reason, these utility functions are
called the constant-relative-risk-aversion (CRRA) class of preferences. Notice that
our definition does not allow for γ = 1. However, it is straightforward to show that
function u(w) = ln(w) satisfies the property that R(w) = 1 for all w. Thus, the set
of all CRRA utility functions is completely defined by7

u(w) =

⎧⎪⎨
⎪⎩

w1−γ

1 − γ
for γ � 0, γ �= 1,

ln(w) for γ = 1.

(1.17)

7We can also show that u(w) = ln(w) as a limiting case of the power utility function. To this end,
rewrite the power utility function, using a linear transformation, as

u(w) = 1

1 − γ
(w1−γ − 1).
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As we will see later in this book, this class of utility functions eliminates any
income effects when making decisions about risks whose size is proportional to
one’s level of wealth. For example, the relative risk premium Π̂ defined by equation
(1.14) is independent of wealth w in this case. The assumption that relative risk
aversion is constant enormously simplifies many of the problems often encountered
in macroeconomics and finance.

1.8 Bibliographical References, Extensions and Exercises

The contribution by Pratt (1964) basically opened and closed the field covered in this
chapter. It is, however, fair to mention that the measure of absolute risk aversion has
been discovered independently by Arrow (1963) and de Finetti (1952). The paper by
de Finetti was written in Italian and even today is not given the attention it deserves.
The paper by Pratt is by far the most advanced in defining the notions of an increase
in risk aversion and of decreasing absolute risk aversion. The orders of risk aversion
are introduced by Segal and Spivak (1990).

Ross (1981) challenged the idea that A = −u′′/u′ is a good measure of the degree
of risk aversion of an agent. Kihlstrom, Romer and Williams (1981) and Nachman
(1982) showed that if initial wealth is uncertain, it is not true that an agent v, who is
more risk-averse than another agent u in the sense of Arrow–Pratt, will be ready to
pay more to get rid of another risk. Ross (1981) characterized the conditions on u

and v that imply that Πv � Πu even when initial wealth is uncertain and potentially
correlated with the risk under scrutiny. These conditions are of course stronger than
Av � Au.

There is much contradictory empirical evidence on the shape of relative risk aver-
sion as a function of wealth. Many authors have empirically estimated R, assuming
that we have CRRA. Fewer authors have examined whether R might be increas-
ing or decreasing in wealth. A good summary of many of these results appears in
Ait-Sahalia and Lo (2000).
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Exercises

(1.1) An individual has the following utility function:

u(w) = w1/2.

Her initial wealth is 10 and she faces the lottery X̃ : (−6, 1
2 ; +6, 1

2 ).

(a) Compute the exact value of the certainty equivalent and of the risk
premium.

(b) Apply Pratt’s formula to obtain an approximation of the risk premium.

(c) Show that with such a utility function absolute risk aversion is decreasing
in wealth while relative risk aversion is constant.

(d) If the utility function becomes

v(w) = w1/4,

answer again part (a). Are you surprised by the changes in the certainty
equivalent and in the risk premium? Relate this change to the notion
of ‘more risk averse’ (i.e. express v(w) as a concave transformation of
u(w)).

(e) If the risk becomes Ỹ : (−3, 1
2 ; +3, 1

2 ), compute the new risk premium
as approximated by Pratt’s formula. Why is the approximated risk pre-
mium four times smaller than the risk premium for X̃?

(1.2) As in the previous exercise, consider an initial wealth of 10 and the lottery X̃.
Assume now that the utility is:

u =
{

w for w � 10,

1
2w + 5 for w � 10.

(1.18)

(a) Draw the utility function. Is it globally concave?

(b) Compute the certainty equivalent and the risk premium attached to X̃.

(c) Can you apply the Arrow–Pratt approximation? Why?

(d) Consider now the lottery Ỹ defined in exercise 1.1. Compute the risk
premium attached to Ỹ . Is it smaller than for X̃? Why?

(e) Answer (b) and (d) above if the individual has an initial wealth of 20.
How do the risk premia for X̃ and Ỹ compare?
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(1.3) Let u = w2 for w � 0.

(a) Compute the exact risk premium if initial wealth is 4 and if a decision
maker faces the lottery (−2, 1

2 ; +2, 1
2 ). Explain why the risk premium

is negative.

(b) If the utility function becomes v = w4, what happens to the risk pre-
mium? Show that v is a convex transformation of u.

(1.4) Let u = ln w.

(a) Does this utility function exhibit the DARA property?

(b) Compute −u′′′/u′′ and compare it with −u′′/u′.
(e) Prove that −u′(w) is a concave transformation of u(w) (hint: use Pratt’s

theorem).

(1.5) Consider the family of exponential utility functions

u = 1 − exp(−aw)

a
.

(a) Show that a is the degree of absolute risk aversion.

(b) Show that u becomes linear in w when a tends to zero (hint: use
L’Hôpital’s rule).

(c) Consider lottery x̃ with positive and negative payoffs. Determine the
value of Eu(x̃) when a tends to infinity.




